Question Paper Code : 11215

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Sixth Semester

Electronics and Communication Engineering EC 1351 A – DIGITAL COMMUNICATION TECHNIQUES (Regulation 2008)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

- 1. Define the term "Quantisation".
- 2. What is the need for a pre-alias filter ?
- 3. What is inter symbol interference ?
- 4. What is eye pattern ?
- 5. Draw the signal-space diagram and show the signal constellation for coherent binary FSK system.
- 6. What is MSK ? What are its advantages over an ordinary binary FSK ?
- 7. Prove that $GH^T = HG^T$ for a systematic linear block code.
- 8. Draw the block diagram of decoder for cyclic code.
- 9. What is meant by direct sequence ?
- 10. Define processing gain and jamming margin.

11215

$PART - B (5 \times 16 = 80 marks)$

11.	(a)	(i) What is meant by sampling ? Explain flat sampling process with a neat diagram.	5)
		(ii) What is meant by companding ? Explain μ -law companding. (5)	5)
		(iii) Draw the block diagram of adaptive delta modulation systems and explain each block in detail.	5)
		OR	
	(b)	(i) Draw the block diagram of PCM system and explain the function of each block. (10))
		 (ii) A PCM system uses a uniform quantizer followed by a 7 bit binary encoder. Determine the output SNRq when a sinusoidal modulating wave of frequency 1MHz is applied to its input. 	5)
12.	(a)	Derive an expression, for minimum error probability and impulse response of matched filter. (16	6)
OR			
	(b)	Explain in detail, the operation of duo binary encoder without and with precoder. (16	9
13.	(a)	Explain in detail, the operation of QPSK transmitter and receiver. (16 OR	9
	(b)	Write short notes on carrier and symbol synchronization. (16	9
14.	(a)	Consider a binary linear block code with encoding matrix	
		$\mathbf{G} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$	
		(i) Find the parity check matrix. (3)	8
		(i) Construct a standard array. (5)	
		(iii) Determine how many errors this code can detect and correct. (4)	
		(iv) Draw the encoder and syndrome computation circuit. (4	
		OR	,
	(b)	(i) Explain the maximum likelihood decoding of convolutional code. (8)	5)
		(ii) Explain about turbo encoder with block diagram. (8)
15.	(a)	With a neat block diagrams, explain the direct sequence spread spectrum system that employs a coherent binary phase shift keying. Give BER expression. OR	
	(b)	Discuss the salient features of frequency hop spread spectrum systems. Also	
		explain the generation and detection of frequency hopped signals with relevant diagrams.	

11215

.